Genome-Wide Discovery and Analysis of Phased Small Interfering RNAs in Chinese Sacred Lotus
نویسندگان
چکیده
Phased small interfering RNA (phasiRNA) generating loci (briefly as PHAS) in plants are a novel class of genes that are normally regulated by microRNAs (miRNAs). Similar to miRNAs, phasiRNAs encoded by PHAS play important regulatory roles by targeting protein coding transcripts in plant species. We performed a genome-wide discovery of PHAS loci in Chinese sacred lotus and identified a total of 106 PHAS loci. Of these, 47 loci generate 21 nucleotide (nt) phasiRNAs and 59 loci generate 24 nt phasiRNAs, respectively. We have also identified a new putative TAS3 and a putative TAS4 loci in the lotus genome. Our results show that some of the nucleotide-binding, leucine-rich repeat (NB-LRR) disease resistance proteins and MYB transcription factors potentially generate phasiRNAs. Furthermore, our results suggest that some large subunit (LSU) rRNAs can derive putative phasiRNAs, which is potentially resulted from crosstalk between small RNA biogenesis pathways that are employed to process rRNAs and PHAS loci, respectively. Some of the identified phasiRNAs have putative trans-targets with less than 4 mismatches, suggesting that the identified PHAS are involved in many different pathways. Finally, the discovery of 24 nt PHAS in lotus suggests that there are 24 nt PHAS in dicots.
منابع مشابه
Genome-Wide Identification of SSR and SNP Markers Based on Whole-Genome Re-Sequencing of a Thailand Wild Sacred Lotus (Nelumbo nucifera).
Genomic resources such as single nucleotide polymorphism (SNPs), insertions and deletions (InDels) and SSRs (simple sequence repeats) are essential for crop improvement and better utilization in genetic breeding. However, the resources for the sacred lotus (Nelumbo nucifera Gaertn.) are still limited. In the present study, to dissect large-scale genomic molecular marker resources for sacred lot...
متن کاملGenome-wide identification and characterization of GRAS transcription factors in sacred lotus (Nelumbo nucifera)
The GRAS gene family is one of the most important plant-specific gene families, which encodes transcriptional regulators and plays an essential role in plant development and physiological processes. The GRAS gene family has been well characterized in many higher plants such as Arabidopsis, rice, Chinese cabbage, tomato and tobacco. In this study, we identified 38 GRAS genes in sacred lotus (Nel...
متن کاملSmall interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملCharacterization of Unique Small RNA Populations from Rice Grain
Small RNAs (approximately 20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are de...
متن کاملDesign, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...
متن کامل